Collapsing of the line bundle mean curvature flow on Kähler surfaces
نویسندگان
چکیده
We study the line bundle mean curvature flow on Kähler surfaces under hypercritical phase and a certain semipositivity condition. naturally encounter such condition when considering blowup of surfaces. show that converges smoothly to singular solution deformed Hermitian–Yang–Mills equation away from finite number curves negative self-intersection surface. As an application, we obtain lower bound Kempf–Ness type functional space potential functions satisfying
منابع مشابه
Non-collapsing in Mean-convex Mean Curvature Flow
We provide a direct proof of a non-collapsing estimate for compact hypersurfaces with positive mean curvature moving under the mean curvature flow: Precisely, if every point on the initial hypersurface admits an interior sphere with radius inversely proportional to the mean curvature at that point, then this remains true for all positive times in the interval of existence. We follow [4] in defi...
متن کاملMean Curvature Blowup in Mean Curvature Flow
In this note we establish that finite-time singularities of the mean curvature flow of compact Riemannian submanifolds M t →֒ (N, h) are characterised by the blow up of the mean curvature.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations and Partial Differential Equations
سال: 2021
ISSN: ['0944-2669', '1432-0835']
DOI: https://doi.org/10.1007/s00526-020-01908-0